1.1.1. synchronized

JMM关于synchronized的两条规定(synchronized如何实现内存可见性):
  • 线程加锁时,将清空工作内存中共享变量的值,从而使用共享变量时需要从主内存中重新读取最新的值。

  • 线程解锁时,必须把共享变量的最新值刷新到主内存中。

1.底层原理

Java 虚拟机中的同步(Synchronization)基于进入和退出管程(Monitor)对象实现, 无论是显式同步(有明确的 monitorenter 和 monitorexit 指令,即同步代码块)还是隐式同步都是如此

1.1 Mutex Lock

监视器锁(Monitor)本质是依赖于底层的操作系统的Mutex Lock(互斥锁)来实现的。每个对象都对应于一个可称为" 互斥锁" 的标记,这个标记用来保证在任一时刻,只能有一个线程访问该对象。

互斥锁:用于保护临界区,确保同一时间只有一个线程访问数据。对共享资源的访问,先对互斥量进行加锁,如果互斥量已经上锁,调用线程会阻塞,直到互斥量被解锁。在完成了对共享资源的访问后,要对互斥量进行解锁。

mutex的工作方式:

img

  1. 申请mutex
  2. 如果成功,则持有该mutex
  3. 如果失败,则进行spin自旋. spin的过程就是在线等待mutex, 不断发起mutex gets, 直到获得mutex或者达到spin_count限制为止
  4. 依据工作模式的不同选择yiled还是sleep
  5. 若达到sleep限制或者被主动唤醒或者完成yield, 则重复1~4步,直到获得为止

由于Java的线程是映射到操作系统的原生线程之上的,如果要阻塞或唤醒一条线程,都需要操作系统来帮忙完成,这就需要从用户态转换到核心态中,因此状态转换需要耗费很多的处理器时间。所以synchronized是Java语言中的一个重量级操作。在JDK1.6中,虚拟机进行了一些优化,譬如在通知操作系统阻塞线程之前加入一段自旋等待过程,避免频繁地切入到核心态中:

synchronized与java.util.concurrent包中的ReentrantLock相比,由于JDK1.6中加入了针对锁的优化措施(见后面),使得synchronized与ReentrantLock的性能基本持平。ReentrantLock只是提供了synchronized更丰富的功能,而不一定有更优的性能,所以在synchronized能实现需求的情况下,优先考虑使用synchronized来进行同步。

1.2 理解Java对象头与Monitor

在JVM中,对象在内存中的布局分为三块区域:

  • 对象头 :Mark Word + Class MetaData Address(类型指针)
  • 实例变量 : 存放类的属性、数据信息(包括父类的),如果是数组则包括数组长度。
  • 对齐填充 :非必须存在,仅为了字节对齐。

image

1.2.1对象头
  • Mark Word:用于存储对象自身的运行时数据,如hashcode、GC分代年龄、锁状态标志、线程持有的锁、偏向线程ID、偏向时间戳等;
  • Class MetaData Address(类型指针):类型指针指向对象的类元数据,JVM通过这个指针确定该对象是哪个类的实例。

考虑到JVM的空间效率,Mark Word 被设计成为一个非固定的数据结构,以便存储更多有效的数据.

image

这里我们主要分析一下重量级锁也就是通常说synchronized的对象锁,锁标识位为10,其中指针指向的是monitor对象(也称为管程或监视器锁)的起始地址。

1.2.2Monitor

每个对象都存在着一个 monitor 与之关联,对象与其 monitor 之间的关系有存在多种实现方式,如monitor可以与对象一起创建销毁或当线程试图获取对象锁时自动生成,但当一个 monitor 被某个线程持有后,它便处于锁定状态。在Java虚拟机(HotSpot)中,monitor是由ObjectMonitor实现的,其主要数据结构如下(位于HotSpot虚拟机源码ObjectMonitor.hpp文件,C++实现的)

ObjectMonitor() {
    _header       = NULL;
    _count        = 0; //记录个数
    _waiters      = 0,
    _recursions   = 0;
    _object       = NULL;
    _owner        = NULL; //指向持有ObjectMonitor对象的线程。
    _WaitSet      = NULL; //处于wait状态的线程,会被加入到_WaitSet
    _WaitSetLock  = 0 ;
    _Responsible  = NULL ;
    _succ         = NULL ;
    _cxq          = NULL ;
    FreeNext      = NULL ;
    _EntryList    = NULL ; //处于等待锁block状态的线程,会被加入到该列表
    _SpinFreq     = 0 ;
    _SpinClock    = 0 ;
    OwnerIsThread = 0 ;
  }

ObjectMonitor中有两个队列,_WaitSet 和 _EntryList,用来保存ObjectWaiter对象列表( 每个等待锁的线程都会被封装成ObjectWaiter对象),_owner指向持有ObjectMonitor对象的线程。

当多个线程同时访问一段同步代码时,首先会进入 _EntryList 集合,当线程获取到对象的monitor 后进入 _Owner区域并把monitor中的owner变量设置为当前线程,同时monitor中的计数器count加1。

若线程调用 wait()方法,将释放当前持有的monitor,owner变量恢复为null,count自减1,同时该线程进入WaitSet集合中等待被唤醒。若当前线程执行完毕也将释放monitor(锁)并复位变量的值,以便其他线程进入获取monitor(锁)。如下图所示

image

由此看来,monitor对象存在于每个Java对象的对象头中(存储的指针的指向),synchronized锁便是通过这种方式获取锁的,也是为什么Java中任意对象可以作为锁的原因,同时也是notify/notifyAll/wait等方法存在于顶级对象Object中的原因。

1.3 synchronized代码块底层原理 显示同步

反编译synchronized代码块,可以从字节码中看到,同步语句块的实现使用的是monitorenter 和 monitorexit 指令。

  • monitorenter指令指向同步代码块的开始位置
  • monitorexit指令则指明同步代码块的结束位置
public void syncTask();
    descriptor: ()V
    flags: ACC_PUBLIC
    Code:
      stack=3, locals=3, args_size=1
         0: aload_0
         1: dup
         2: astore_1
         3: monitorenter  //注意此处,进入同步方法
         4: aload_0
         5: dup
         6: getfield      #2             // Field i:I
         9: iconst_1
        10: iadd
        11: putfield      #2            // Field i:I
        14: aload_1
        15: monitorexit   //注意此处,退出同步方法
        16: goto          24
        19: astore_2
        20: aload_1
        21: monitorexit //注意此处,退出同步方法
        22: aload_2
        23: athrow
        24: return
      Exception table:
      //省略其他字节码.......
}
1.4 synchronized方法底层原理 隐式同步

从字节码中可以看出,synchronized修饰的方法并没有monitorenter指令和monitorexit指令,取得代之的确实是ACC_SYNCHRONIZED标识,该标识指明了该方法是一个同步方法,JVM通过该ACC_SYNCHRONIZED访问标志来辨别一个方法是否声明为同步方法,从而执行相应的同步调用。

//==================syncTask方法======================
  public synchronized void syncTask();
    descriptor: ()V
    //方法标识ACC_PUBLIC代表public修饰,ACC_SYNCHRONIZED指明该方法为同步方法
    flags: ACC_PUBLIC, ACC_SYNCHRONIZED
    Code:
      stack=3, locals=1, args_size=1
         0: aload_0
         1: dup
         2: getfield      #2                  // Field i:I
         5: iconst_1
         6: iadd
         7: putfield      #2                  // Field i:I
        10: return
      LineNumberTable:
        line 12: 0
        line 13: 10

2.synchronized与static synchronized 的区别

2.1 关于加锁和解锁的对象:
  • synchronized代码块 :同步代码块,作用范围是整个代码块,作用对象是调用这个代码块的对象。

  • synchronized方法 :同步方法,作用范围是整个方法,作用对象是调用这个方法的对象。

  • synchronized静态方法 :同步静态方法,作用范围是整个静态方法,作用对象是调用这个类的所有对象。

  • synchronized(this):作用范围是该对象中所有被synchronized标记的变量、方法或代码块,作用对象是对象本身。

  • synchronized(ClassName.class) :作用范围是静态的方法或者静态变量,作用对象是Class对象。

2.2对象锁和类锁

synchronized(this)添加的是对象锁,synchronized(ClassName.class)添加的是类锁,它们的区别如下:

  • 对象锁:对象锁是用来控制实例方法之间的同步,Java的所有对象都含有1个互斥锁,这个锁由JVM自动获取和释放。线程进入synchronized方法的时候获取该对象的锁,当然如果已经有线程获取了这个对象的锁那么当前线程会等待;synchronized方法正常返回或者抛异常而终止,JVM会自动释放对象锁。

  • 类锁:类锁是来控制静态方法(或静态变量互斥体)之间的同步。类锁是一个概念上的东西,用来帮助我们理解锁定实例方法和静态方法的区别的。我们都知道,java类可能会有很多个对象,但是只有1个Class对象,也就说类的不同实例之间共享该类的Class对象。Class对象其实也仅仅是1个java对象,只不过有点特殊而已。由于每个java对象都有个互斥锁,而类的静态方法是需要Class对象。所以所谓类锁,不过是Class对象的锁而已。获取类的Class对象有好几种,最简单的就是MyClass.class的方式。类锁和对象锁不是同一个东西,一个是类的Class对象的锁,一个是类的实例的锁。也就是说:一个线程访问静态sychronized的时候,允许另一个线程访问对象的实例synchronized方法。反过来也是成立的,为他们需要的锁是不同的。

  • synchronized: 锁的是当前实例对象,进入同步代码前要获得的是当前实例的锁;两个不同实例则不受影响。

  • static synchronized:锁的是当前类的class对象(所有实例),进入同步代码前要获得当前类对象的锁;限制线程同时访问jvm中该类的所有实例同时访问对应的代码快

一个日本作者-结成浩的《java多线程设计模式》有这样的一个列子:
      pulbic class Something(){
         public synchronized void isSyncA(){}
         public synchronized void isSyncB(){}
         public static synchronized void cSyncA(){}
         public static synchronized void cSyncB(){}
     }

   那么,加入有Something类的两个实例a与b,那么下列组方法何以被1个以上线程同时访问呢
   a.   x.isSyncA()与x.isSyncB() 
   b.   x.isSyncA()与y.isSyncA()
   c.   x.cSyncA()与y.cSyncB()
   d.   x.isSyncA()与Something.cSyncA()
    这里,很清楚的可以判断:
   a,都是对同一个实例的synchronized域访问,因此不能被同时访问
   b,是针对不同实例的,因此可以同时被访问
   c,因为是static synchronized,所以不同实例之间仍然会被限制,相当于Something.isSyncA()与   Something.isSyncB()了,因此不能被同时访问。
   那么,第d呢?,书上的 答案是可以被同时访问的,答案理由是synchronzied的是实例方法与synchronzied的类方法由于锁定(lock)不同的原因。

结论:

  • A: synchronized static是某个类的范围,synchronized static cSync{}防止多个线程同时访问这个 类中的synchronized static 方法。它可以对类的所有对象实例起作用。

  • B: synchronized 是某实例的范围,synchronized isSync(){}防止多个线程同时访问这个实例中的synchronized 方法


3.关于“关键字synchronized不能被继承”

  1. 子类继承父类时,如果没有重写父类中的同步方法,子类同一对象,在不同线程并发调用该方法时,具有同步效果。

  2. 子类继承父类,并且重写父类中的同步方法,但没有添加关键字synchronized,子类同一对象,在不同线程并发调用该方法时,不再具有同步效果,这种情形即是"关键字synchronized不能被继承"的转述。

关于“关键字synchronized不能被继承”


4.Java虚拟机对synchronized的优化

在 Java 6 之前,Monitor 的实现完全是依靠操作系统内部的互斥锁,因为需要进行用户态到内核态的切换,所以同步操作是一个无差别的重量级操作。

现代的(Oracle)JDK 中,JVM 对此进行了大刀阔斧地改进,提供了三种不同的 Monitor 实现,也就是常说的三种不同的锁:偏斜锁(Biased Locking)、轻量级锁和重量级锁,大大改进了其性能。

锁的升级 降级

所谓锁的升级、降级,就是 JVM 优化 synchronized 运行的机制,当 JVM 检测到不同的竞争状况时,会自动切换到适合的锁实现,这种切换就是锁的升级、降级。

当没有竞争出现时,默认会使用偏斜锁。JVM 会利用 CAS 操作,在对象头上的 Mark Word 部分设置线程 ID,以表示这个对象偏向于当前线程,所以并不涉及真正的互斥锁。这样做的假设是基于在很多应用场景中,大部分对象生命周期中最多会被一个线程锁定,使用偏斜锁可以降低无竞争开销。

如果有另外的线程试图锁定某个已经被偏斜过的对象,JVM 就需要撤销(revoke)偏斜锁,并切换到轻量级锁实现。轻量级锁依赖 CAS 操作 Mark Word 来试图获取锁,如果重试成功,就使用普通的轻量级锁;否则,进一步升级为重量级锁(可能会先进行自旋锁升级,如果失败再尝试重量级锁升级)。

我注意到有的观点认为 Java 不会进行锁降级。实际上据我所知,锁降级确实是会发生的,当 JVM 进入安全点(SafePoint)的时候,会检查是否有闲置的 Monitor,然后试图进行降级。

Synchronized优化后的锁机制简单介绍一下,包括自旋锁、偏向锁、轻量级锁、重量级锁?
  • 自旋锁:

线程自旋说白了就是让cpu在做无用功,比如:可以执行几次for循环,可以执行几条空的汇编指令,目的是占着CPU不放,等待获取锁的机会。如果旋的时间过长会影响整体性能,时间过短又达不到延迟阻塞的目的。

  • 偏向锁

偏向锁就是一旦线程第一次获得了监视对象,之后让监视对象“偏向”这个线程,之后的多次调用则可以避免CAS操作,说白了就是置个变量,如果发现为true则无需再走各种加锁/解锁流程。

  • 轻量级锁:

轻量级锁是由偏向所升级来的,偏向锁运行在一个线程进入同步块的情况下,当第二个线程加入锁竞争用的时候,偏向锁就会升级为轻量级锁;

  • 重量级锁

重量锁在JVM中又叫对象监视器(Monitor),它很像C中的Mutex,除了具备Mutex(0|1)互斥的功能,它还负责实现了Semaphore(信号量)的功能,也就是说它至少包含一个竞争锁的队列,和一个信号阻塞队列(wait队列),前者负责做互斥,后一个用于做线程同步。


深入理解Java并发之synchronized实现原理

Copyright © tracyliu-FE 2021 all right reserved,powered by Gitbook文件修订时间: 2022-03-06 12:52:33

results matching ""

    No results matching ""